
REFACTORING TECHNIQUES

Composing Methods

Name Description
Extract Method You have a code fragment that can be grouped together. Turn this

fragment into a method whose name explains the purpose of this
method.

Inline Method A method’s body is just as clear as its name. Put the method’s
body into the body of its callers and remove the method.

Inline Temp You have a temp that is assigned to once with a simple expression,
and the temp is getting in the way of other refactorings. Replace all
references to that temp with the expression.

Replace Temp With Query You are using a temporary variable to hold the result of an
expression. Extract the expression into a method. Replace all
references to the temp with the expression. The new method can
then be used in other methods.

Introduce Explaining Variable You have a complicated expression. Put the result of the
expression, or parts of the expression, in a temporary variable with
a name that explains the purpose.

Split Temporary Variable You have a temporary variable assigned to more than once, but is
not a loop variable nor a collecting temporary variable. Make a
separate temporary variable for each assignment.

Remove Assignments to
Parameters

The code assigns to a parameter. Use a temporary variable instead.
Motivated by manipulation that might not be observed due to a
changes made to the object a reference points to.

Replace Method With Method
Object

You have a long method that uses local variables in such a way
that you cannot apply Extract Method. Turn the method into its
own object so that all the local variables becomes fields on that
object. You can then decompose the method into other methods on
the same object.

Substitute Algorithm You want to replace an algorithm with one that is clearer. Replace
the body of the method with the new algorithm.

Moving Features Between Objects

Name Description
Move method A method is, or will be, using or used by more features of another

class than the class on which it is defined. Create a new method
with a similar body in the class it uses most. Either turn the old
method into a simple delegation, or remove it altogether.

Move field A field, is or will be, used by another class more than the class on
which it is defined. Create a new field in the target class, and
change all its users.

Extract Class You have one class doing work that should be done by two. Create
a new class and move the relevant fields and methods from the old
class into the new class.

Inline Class A class isn’t doing very much. Move all its features into another
class and delete it.

Hide Delegate A client is calling a delegate class of an object. Create methods on
the server to hide the delegate.

Remove Middle Man A class is doing too mcuh simple delegation. Get the client to call
the delegate directly.

Introduce Foreign Method A server class you are using needs an additional method, but you
can’t modify the class. Create a method in the client class with an
instnace of the server class as its first method.

Introduce Local Extension A server class you are using needs several additional methods, but
you can’t modify the class. Create a new class that contains those
extract methods. Make this extension class a subclass or wrapper
of the original.

Organisation Data

Name Description
Self-Encapsulate Field You are accessing a field directly, but the coupling to the field is

becoming awkward. Create getting and setting methods for the
field and use only those to access the field.

Replace Data Value with
Objects

You have a data item that needs additional data or behaviour. Turn
the data item into an object.

Change Value to Reference You have a class with many equal instances that you want to
replace with a single object. Turn the object into a reference object.

Change Reference to Value You have a reference object that is small, immutable, and awkward
to manage. Turn it into a value object.

Replace Array With Object You have an array in which certain elements mean different things.
Replace the array with an object that has a field for each element.

Duplicate Observed Data You have domain data avaialble only in a GUI control, and domain
methods need access. Copy the data to a domain object. Set up an
observer to synchronize the two pieces of data.

Change Unidirectional
Association to Bidirectional

You have two classes that need to use each other’s features, but
there is only a one-way link. Add back pointers, and change
modifiers to update both sets.

Change Bidirectional
Association to Unidirectional

You have a two-way association but one class no longer needs
features from the other. Drop the unneeded end of the association.

Replace Magic Number with
Symbolic Constant

You have a literal number with a particular meaning. Create a
constant, name it after the meaning, and replace the number with
it.

Ecnapsulate Field There is a public field. Make it private and provide accessors.
Encapsulate Collection A method returns a collection. Make it return a read-only view and

provide add/remove methods.
Replace Record with Data

Class
You need to interface with a record structure in a traditional
programming environment. Make a dumb data object for the
record.

Replace Type Code with
Class

A class has a numeric type code that does not affect its behaviour.
Replace the number with a new class.

Replace Type Code with
Subclasses

You have an immutable type code that affects the behaviour of a
class. Replace the type code with subclasses.

Replace Type Code with
State/Strategy

You have a type code that affects the behaviour of a class, but you
cannot use subclassing. Replace the type code with a state object.

Replace Subclass with Fields You have subclasses that vary only in mehtods that return constant
data. Change the methods to superclass fields and eliminate the

subclasses.

Simplifying Conditional Expressions

Name Description
Decompose Conditional You have a complicated conditional (if-then-else) statement.

Extract methods from the condition, then part and else parts.
Consolidate Conditional

Expression
You have a sequence of conditional tests with the same result.
Combine them into a single conditional expression and extract it.

Consolidate Duplicate
Conditional Fragments

The same fragment of code is in all branches of a conditional
expression. Move it outside of the expression.

Remove Control Flag You have a variable that is acting as a control flag for a series of
boolean statements. Use a break or return instead.

Replace Nested Conditional
with Guard Clauses

A method has conditional behaviour that does not make clear the
normal path of execution. Use guard clauses for all the special
cases.

Replace Conditiional with
Polymorphsism

You have a conditional that chooses different behaviour depending
on the type of object. Move each leg of the conditional to an
overriding method in a subclass. Make the original method
abstract.

Introduce Null Object You have repeated checks for null value. Replace the null value
with a null object.

Introduce Assertion A section of code assumes something about the state of the
program. Make the assumption explicit with an assertion.

Making Method Calls Simpler

Name Description
Rename method The name of a method does not reveal its purpose. Change the

name of the method.
Add parameter A method needs more information from its caller. Add a parameter

for an object that can pass on this information.
Remove parameter A parameter is no longer used by the method body. Remove it.

Separate Query from Modifier You have a method that returns a value but also changes the state
of an object. Create two methods, one for the query and one for the
modification.

Parameterise Method Several methods do similar things but with different values
contained in the method body. Create one method that uses a
parameter for the different values.

Replace Parameter with
Explicit Methods

You have a method that runs different code depending on the
values of an enumerated parameter. Create a separate method for
each value of the parameter.

Preserve Whole Object You are getting several values from an objecta n passing these
values as parameters in a method call. Send the whole object
instead.

Replace Parmeter With
Method

An object invokes a method, then passes the result as a parameter
for a method. The receiver can also invoke this method. Remove
the parameter and let the receiver invoke its method.

Introduce Parameter Object You have a group of parameters that naturally go together. Replace
them with an object.

Remove Setting Method A field should be set at creation time and never altered. Remove

any setting method for that field (put it into the constructor if need
be)

Hide Method A method is not used by any other class. Make the method private.
Replace Constructor with

Facftory Method
You want to do more than simple construction when you create an
object. Replace the constructor with a factory method.

Encapsulate Downcast A method returns an object that needs to be downcasted by its
callers. Move the downcast to within the method.

Replace Error code with
Exception

A method returns a special code to indicate an error. Throw an
exception instead.

Replace Exception with Test You are throwing a checked exception on a condition the caller
could have checked first. Change the caller to make the test first.

Dealing with Generalisation

Name Description
Pull Up Field Two subclasses have the same field. Move the field to the

superclass.
Pull Up Method You have methods with identical results on subclasses. Move them

to the superclass.
Pull Up Constructor Body You have constructors on subclassees with mostly identitcal

bodies. Create a superclass constructor; call this from the subclass
methods.

Push Down Method Behaviour on a superclass is relevant only for some of its
subclasses. Move it to those subclasses.

Push Down Field A field is used only by some subclasses. Move the field to those
subclasses.

Extract Subclass A class has features that are used only in some instances. Create a
subclass for that subset of features.

Extract Superclass You have two clasess with similar features. Create a superclass
and move the common features to the superclass.

Extract Interface Several clients use the same subset of a class’ interface, or two
classes have part of their interfaces in common.

Collapse Hierarchy A superclass and subclass are not very different. Merge them
together.

Form Template Method You have two methods in subclasses that perform similar steps in
the same order, yet the steps are different. Get the steps into
methods with the same signature, so that the original methods
become the same. Then you can pull them up.

Replace Inheritance with
Delegation

A subclass uses only part of the superclasses interface or does not
want to inherit or does not want to inherit data. Create a field for
the superclass, adjust methods to delegate to the superclass, and
remove the subclassing.

Replace Delegation with
Inheirtance

You’re using delegation and are often writing many simple
delegations for the entire interface. Make the delegating class a
subclass of the delegate.

Big Refactoring

Name Description
Tease Apart Inheritance You have an inheritance hierarchy that is doing two jobs at once.

Create two hierarchites and use delegation to invoke one from the

other.
Converty Procedural Design

to Objects
You have code written in procedural style. Turn the data records
into objects, break up the behaviour, and move the behaviour to
the objects.

Separate Domain from
Presentation

You have GUI classees that contain domain logic. Separate the
domain logic into separate domain classes.

Extract Hierarchy You have a class that is doing too much work, at least in part
through many conditional statements. Create a hierarchy of classes
in which each subclass represents a special case.

Signs of code that might need refactoring

Name Description Solution(s)
Duplicated Code Demonstrated if cut-and-paste is done more

than once.
Extract Method, Extract Class,
Pull UP Method, Form
Template Method

Long Method If you are scrolling screen on screen when
going through the same method, you might
have a method too long

Extract Method, Replace Temp
with Query

Large Class May show up as too many instance
variables. You might need to better
decompose to serveral classes or else.

Extract Class, Extract Subclass,
Extract Interface, Replace Data
Value with Object

Long Parameter
List

Parameter lists are much too large or if you
have optional parameters. Demonstrated if
some of the parameters are not being used.

Replace Parameter with
Method, Introduce Parameter
Object, Preserve Whole Object

Divergent Change When a single class is changed too
frequently when changes are requested.
Functionality may need to be extracted into
separate classes or methods.

Extract Class

Shotgun Surgery When a change in the system environmetn
changes occurs, you have to edit many many
classes.

Move Method, Move Field,
Inline class

Feature Envy When another class is depending on another
one to provide a certain functionality,
another class might actually need to perform
that functionality.

Move Method, Move Field,
Extract Method

Data Clumps These are scattered bits of data that belong
together but are persisted in different
classes/methods.

Extract Class, Introduce
Parameter Object, Preserve
Whole Object

Primitive
Obsesssion

The relunctance to move to objects and keep
fields as separate primitive types

Switch Statements Too many switch statements show
procedural statements.

Replace Conditional with
Polymorphism, Replace Type
Code with Subclasses, Replace
Type Code with State/Strategy,
Replace Parameter with
Explicit Methods, Introduce
Null Objects

Parallel
Inheritance
Hierarchies

Special case of shotgun surgery in which
everytime you subclass one class you will
have to subclass another.

Move Method, Move Field

Lazy Class A class that doesn’t pull its weight. Inline Class, Collapse
Hierarchy

Speculative
Generality

The use of abstract classes or super methods
which must be overriden to be useful. Signs
to look for if the only things using it are test
cases.

Collapse Hierarchy, Inline
Class, Remove Parameter,
Rename Method

Temporary Field An instance variable that is set only in
certain circumstances.

Extract Class, Introduce Null
Object

Message Chains Demonstrated when a client asks one object
for antoher object, which the client then asks
for yet another object, and so on. There is
strong coupling here.

Hide Delegate

Middle Man If a method is simply passing parameters to
another one without providing real
functionality, may be a good candidate for
refactoring

Remove Middle Man, Inline
Method, Replace Delegation
with Inheritance

Inappropriate
Intimacy

When classes deal with private or protected
variables in another class far too frequently.
Common on inheritance hierarchies.

Move Method, Move Field,
Chagne Bidirectional
Association to Unidirectional,
Replace Inheritance with
Delegation, Hide Delegate

Alternative
Classes with
Different
Interfaces

When another class doing the same job is
created just for a different signature. This
should be replaced with overloading and
merging to a single class.

Rename Method, Move
Method

Incomplete
Library Class

When library functionality doesn’t provide
the complete set required (usually when you
are given a library to work with external to
your organisation or project).

Introduce Foreign Method,
Introduce Local Extension

Data Class Dumb data holders may provide better
functionality if given more things to do.

Move Method, Encapsulate
Field, Encapsulate Collection

Refused Bequest When a subclass doesn’t want methods
inherent in the superclass.

Repleace Inheritance with
delegation

Comments While comments are great, refactoring may
make most comments superfluous. If a
method is heavily commented, it may need
refactoring

Extract Method, Introduce
Assertion

“Any fool can write code that a
computer can understand. Good
programers write code that
humans can understand.”

“Three strikes and you

refactor.”

